Analysis of Astrometry in the JWST North Ecliptic Pole (NEP) Time Domain Field (TDF)

Victoria Jones
Dr. Rolf Jansen

ASU School of Earth and Space Exploration
Arizona State University
JWST NEP TDF

• Located within JWST’s northern Continuous Viewing Zone centered on the NEP

• Void of bright foreground stars and low galactic foreground extinction

• Community field for time domain science

Image Credit: Desiree Stover/NASA
Background

What is astrometry?

Filter Profiles

Image Credit: Kiso Observatory, University of Tokyo

Image Credit: (Top) NAOJ (Bottom) livephysics
Project Outline

• Create artificial images of Subaru data

• Match the Subaru and LBT catalogs by Right Ascension and Declination

• Astrometrically cross-register the Subaru and LBT images with milli-arcsec precision and identify moving objects (comets, galactic stars, brown dwarfs)
Large Binocular Telescope Data

• Large Binocular Camera Filters \((U, g, r, z)\)

• Observed July 2016 for half a night
 – Equivalent to full night on 8.4 m telescope
 – Median seeing ~ 0.95” with depth ~ 26 AB magnitude
 – Observations part of the field selection

Image Credit: Large Binocular Telescope Observatory Website
Subaru Observations and Data

• Hyper Suprime-Cam Filters \((g, i, z, NB816, NB921)\)

• Observed June 2017 over five nights
 – Seeing between \(~ 0.5\)" and \(~ 1.0\)" with depth \(~ 24-26\) AB magnitude
 – Observations part of larger HEROES survey
 – Almost 1 year after LBT data

Image Credit: Cameron White
Results: Artificial Images

- Aid in the visual validation of moving objects
- Red and magenta objects correspond to bright sources that saturated the relatively long Subaru exposures in both g and i_2, and just g, respectively
Results: LBT Astrometry

- LBT: four separate chips in each camera
 - Must mosaic the images together to get the full picture
Future Work

• Improve the LBT astrometry

• Identify objects that move significantly with respect to instrumental resolution

• Repeat this analysis with the photometry

• Incorporate data taken by *Hubble Space Telescope*
 – Better resolution than either LBT or Subaru

• Publish paper in Astrophysical Journal
Acknowledgments

• Collaborators: Rogier Windhorst, Seth Cohen, Teresa Ashcraft, & NEP TDF team

• Guenther Hasinger, Esther Hu, Christopher Waters and the HEROES team at the Institute for Astronomy at University of Hawaii

• ASU/NASA Space Grant Consortium